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Abstract
We propose a minimal interacting generalization of the geometric Brownian
motion model, which turns out to be formally equivalent to a model describing
the dynamics of networks of analogue neurons. For sufficiently strong
interactions, such systems may have many meta-stable states. Transitions
between meta-stable states are associated with macroscopic reorganizations
of the system, which can be triggered by random external forcing. Such a
system will exhibit intermittent dynamics within a large part of its parameter
space. We propose market dynamics as a possible application of this model,
in which case random external forcing would correspond to the arrival of
important information. The emergence of a model of interacting prices of the
type considered here can be argued to follow naturally from a general argument
based on integrating out all non-price degrees of freedom from the dynamics
of a hypothetical complete description of economic dependences.

PACS numbers: 02.50.−r, 05.40.−a, 89.65.Gh, 89.75.Da

1. Introduction

Much effort has been devoted in recent years to understanding the statistics of price changes
in financial markets (for reviews, see [1–3]).

One of the early formalizations is the geometric Brownian motion model (GBM),
according to which the relative change of a price Si of a stock i performs a random walk,
captured by a Langevin equation of the form

1

Si

dSi

dt
= µi + σiηi(t). (1)

In equation (1), ηi(t) denotes a Gaussian white noise with zero mean and unit variance, µi

characterizes the average (exponential) growth rate of the stock price Si and the volatility σi

measures the strength of the fluctuations about the average exponential growth. Growth rates
µi and volatilities σi could in principle be extracted from observations of real market data over
a suitable time span using standard regression methods. Observed correlations between price

1751-8113/08/324015+12$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/41/32/324015
http://stacks.iop.org/JPhysA/41/324015


J. Phys. A: Math. Theor. 41 (2008) 324015 R Kühn and P Neu

increments of different stocks would entail ηi(t) to be correlated between different stocks,
with correlation coefficients ρij . The parameters thus extracted from market data might then
be used, e.g., as input for portfolio optimization or derivative pricing procedures. There is a
caveat, though.

Although the GBM provides a reasonable first account of the statistics of price changes, it
is known to be inadequate in important respects. In particular, tails in distributions of returns
are underestimated, and the intermittent character of true market dynamics manifesting itself
in strong volatility fluctuations is not captured at all.

The fact that real markets are in fact not well described by GBMs of the simple form (1)
with time-independent parameters µi and σi implies that parameters extracted from observed
prices are not necessarily very useful or reliable in practical applications. Interestingly, there
is an important exception where some of the deficiencies of the GBM can be circumvented,
namely option pricing using Black–Scholes theory based on GBMs with (possibly) time-
dependent parameters (see, e.g., [4]). It turns out that, remarkably, unknown time-dependent
growth rates of stocks disappear from the option pricing problem, leaving only the problem
of estimating volatilities to be solved. This problem is frequently addressed in ‘inverse form’,
inferring (time-dependent) the so-called implied volatilities [4] from the prices of options
actually traded in the market, a problem regarded to be stable and useful enough to be used in
the financial industry.

Efforts at improving upon the GBM itself have broadly followed two main directions. In
one, better characterizations of the statistics of price changes have been sought, in which the
Gaussian increments of the GBM are replaced by increments following other (stable) laws (e.g.
[5, 6]). In the other, the statistics of price changes is investigated by looking at the mechanisms
underlying market dynamics, for instance, by formulating them, implicitly or explicitly, as
the collective result of actions of agents operating in a market. Percolation models [7–9], the
minority game (MG) and its ramifications [10–12], or Ising-type models of interacting agents
describing herding effects (e.g. [13, 14]) might be mentioned in this respect.

In the present contribution, we explore an approach which is in some sense intermediate
between the two lines of research just mentioned. That is, we shall not at all be explicit about
the possible ‘mechanics’ of a market as might be formalized in terms of demand and supply,
of strategies of agents operating in a market, the role of limit orders, the influence of liquidity
or traded volumes or the like. Rather, we shall arrive at an interacting generalization of the
GBM (to be referred to as iGBM in what follows), which derives its main motivation from very
general considerations concerning projected dynamics, and begin to explore its properties.

Specifically, instead of assuming that relative price changes follow a (perhaps correlated)
GBM model, we assume that their evolution depends to a certain extent on the configuration of
prices of all other stocks traded in a market. This leads to an interaction between prices which
may be thought of as arising effectively through the collection of agents, each acting on the
basis his or her own, more or less rational perception of the underlying economy and market
mechanisms. In toto these interactions would constitute a collective representation of the
underlying economic dependences at the level of the dynamics of prices. Within a dynamics
of prices, interactions are clearly required to generate non-trivial sequential cross-correlations
between prices of different assets as they are observed in real markets (for a recent study, see
[15]). Conversely, considerations about projected dynamics as detailed in section 2 will tell us
that interactions between prices are in fact quite generally unavoidable, within a description
of market dynamics based on prices alone.

We will demonstrate that such a setting also offers simple and transparent mechanisms
to produce intermittent market dynamics. Models of financial markets producing some of the
so-called stylized facts characteristic of real markets have been introduced before, notably the
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percolation model [7, 8] mentioned before, as well as grand-canonical variants of the MG
[16, 17], Ising-type models also including a non-trading option state [13] or autoregressive
models which explicitly include a non-trivial volatility dynamics [18]. The present proposal
differs from previous ones in particular by the fact that it links up rather closely with the GBM
as the classical standard model of financial markets. Unlike the other models mentioned above,
it is formulated entirely in terms of prices, and it deals with the dynamics of a collection of
prices, rather than looking at effects produced by a collection of agents on price formation for
a single traded asset. Within the present paper our main emphasis is on suggesting a robust
mechanism possibly underlying volatile price dynamics that does not require fine tuning of
parameters.

However, we should like to emphasize that—apart from issues of modelling the dynamics
of financial markets—the present model is interesting in its own right as a simple interacting
nonlinear dynamical system exhibiting intermittent dynamics.

The remainder of this paper is organized as follows. In section 2 we introduce our model
of iGBMs, adding two simple and plausible hypotheses to the standard GBM model, and
demonstrate that the resulting dynamical system becomes formally equivalent to a description
of the dynamics of graded response neurons. This correspondence provides the heuristics
which leads us to expect that simple and robust mechanisms will exist in such systems that
can create a ‘market dynamics’ exhibiting typical intermittent features of real markets. A
brief analysis of the collective properties of the system in section 3 is used to guide finding
parameter settings for which intermittent market dynamics is actually expected to occur. The
main outcome of this analysis is that no fine tuning of parameters is required to achieve
the desired effects. Section 4 provides a numerical simulation of the proposed framework,
supplemented by a simple mechanism providing external perturbations to the market dynamics,
such as could be caused by incoming information. Intermittent market dynamics with fat-
tailed distributions of log-returns as well as volatility clustering is, indeed, observed in the
system and quantitatively analysed. The concluding section, section 5, provides a summary
of our results and attempts to put them into a wider perspective.

2. The model

2.1. Structure and motivation of terms

In order to set up the model, it is useful first to rewrite the GBM in terms of fields hi(t)

defined as hi(t) = log[Si(t)/Si0], with Si0 setting a natural unit for Si(t). In terms of the
hi(t), equation (1) transforms (upon setting Ii = µi − 1

2σ 2
i and using Ito’s Lemma) into

dhi

dt
= Ii + σiηi(t). (2)

Starting from this formulation of the GBM (1), we propose our iGBM to take the form

dhi

dt
= Ii − κihi +

∑
j (�=i)

Jij g(hj ) + σiηi(t) (3)

with ηi(t) denoting Gaussian white noises as before, albeit uncorrelated to keep matters simple.
The first addition describes a reverting force that ensures the stability of the system in

the long-term limit. It would ultimately prevent the fields from growing without bounds—
equivalently keep stock prices on the scale of their natural unit Si0. Such a term might reflect
the influence of fundamentalist traders on global market dynamics. The second contribution
describes an interaction among prices that is motivated by underlying economic dependences
among the companies whose stocks are being traded in the market. Such a term could describe
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the co-evolution of stock prices of mutually dependent firms. In equation (3), we take g(h)

to be some nonlinear function of the fields, describing details of the feedback mechanism that
might be at work. A possible choice is a sigmoid function such as a hyperbolic tangent or an
error function which varies most sensitively for prices in the vicinity of their natural value.
Another possible choice is a suitable three-state function representing ‘buy’, ‘hold’ or ‘sell’
recommendations that exist for a given stock.

Before proceeding, it is perhaps worth commenting on the absence of the Martingale
property of (3), given the prominent role attached to it in mathematical finance, and in particular
for establishing no-arbitrage conditions generally held to be a fundamental property of market
dynamics. The point, of course, is that it is not the bare price process (3) that is required to have
the Martingale property—even the financial standard model, non-interacting GBMs, does not
share this property as soon as prices exhibit a non-zero drift—but rather that a risk-adjusted
process can be constructed in which (generally time-dependent) drift terms of the original
process are replaced by the (possibly time-dependent) risk-free interest rate. This requires that
an associated Girsanov transformation between probability measures be well defined. The
details are fairly technical. A sufficient condition is the so-called Novikov condition [19, 20]
which, in essence, requires that integrals over a suitably defined risk-premium exist. Suffice
it to mention here that this condition is easily satisfied for processes with constant volatilities
σi , as long as the processes themselves remain bounded in any bounded interval. If anything,
the mean reverting terms appearing in (3) help to satisfy the latter condition. We refer to the
appendix for a brief account of the formal reasoning.

2.2. A justification from projected dynamics

The following line of reasoning based on general consideration about projected dynamics
could be advanced to justify a model of interacting price degrees of freedom. It runs like
this: suppose one were to start out from a hypothetical complete theory of market dynamics,
formulated in terms of demand and supply, of strategies of agents operating in a market, the
role of limit orders, exchange rates, the influence of liquidity, traded volumes and so on, and
suppose one were to integrate out all but the price degrees of freedom from this underlying
full theory, using, e.g., Mori–Zwanzig projection techniques [21], thereby obtaining a reduced
theory involving price degrees of freedom only. Such a reduced theory would then generally
exhibit the following two features: (i) it would contain effective interactions between prices
and (ii) it would in general be non-Markovian. Our proposal retains property (i), but not (ii).
Within the framework just discussed our model would in its present form thus only constitute
a Markovian approximation to a full reduced theory. We note further that higher order
interactions may normally also be expected to appear in a projected dynamics. Restricting
the present version to pair interactions follows widespread intuition and practice that these
would create the dominant effects. Clearly, neither restriction is a matter of principle. For
example, the Markovian nature of the model suggested above could easily be relaxed by
including memory terms into the dynamical rules (as, indeed, they appear in the Minority
game to mention a popular example [10–12]). We adopt our simplifications here mainly to
keep matters simple. In this sense our model might be regarded as a minimal interacting
generalization of the GBM.

Prior to actually specifying the couplings and the (nonlinear) functions g, our
reformulation of the GBM is actually claiming nothing but the fact that (i) prices do effectively
interact, this interaction being a representation of the true underlying economic dependences
and that (ii) there may be reverting forces, however weak, which ensure the stability of the
market in the long-time limit.
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2.3. Correspondences

Remarkably, the present interacting generalization of the GBM, if formulated at the level
of the fields, is formally identical to a description of the stochastic evolution of a system
of graded response neurons [22], with hi(t) playing the role of post-synaptic potentials, Jij

denoting synaptic couplings, g(h) specifying the neural input output relation and κi designating
trans-membrane conductances leading to leakage currents across membranes, while Ii specify
external input currents.

The importance of this correspondence is in the fact that it immediately suggests heuristics
concerning global properties of such systems and ways of analysing them, which have been
successful in the context of spin glasses and neural networks before. Indeed, a lot is known
about systems of this type [22–26], which can be brought to bear on the analysis of the
corresponding market model. In the absence of noise, the dynamics is governed by a
Lyapunov function provided that the couplings are symmetric and that the function g(h)

describing the feedback mechanism is monotonically increasing [22]. Fairly general methods
exist to elucidate the macroscopic properties of its attractors in that case; e.g., for the Hopfield
model, phase diagrams exhibiting a ‘paramagnetic’ phase at large κ and, depending on the
degree of frustration in the couplings, ‘glassy’ as well as ‘ferromagnetic’ phases at small κ

were computed [23, 24]. Moreover, in glassy phases at small κ (and small Ii) the system
has exponentially many attractors [26], which are expected to remain meta-stable in the weak
noise limit3. For fully asymmetric Gaussian random couplings of zero mean, the noiseless
dynamics (at Ii = 0) is known to be chaotic at sufficiently small κ , whereas it is regular at
large κ [25].

Another interesting correspondence with a quite different interpretation of the equation
of motion—and its own rich spectrum of collective behaviour—follows from the formal
similarity of the noiseless limit of equation (3) with the equation describing the update of
strategy scores in a two-strategy batch version of the minority game [10], in which case the
couplings are anti-Hebbian, and Ii are not independent of the couplings, the common choice
for the nonlinear function g being g(h) = sign(h) in that case.

2.4. Choices

Given the numerous possibilities that could be followed, some specialization is called for
at this point. In what follows, we look at a system with Gaussian random couplings of
the form Jij = J0

N
+ Jxij√

N
, where xij ∼ N (0, 1) with xij xji = α. That is, for α = 1 one

has symmetric couplings, whereas for α = 0, Jij and Jji are uncorrelated. We emphasize
that this choice is not singled out by considerations specific to market dynamics. In fact,
we have no reason to expect that such a generic model will reproduce the salient features
of true market dynamics faithfully in all detail. On the positive side, one might note that
Gaussian distributions constitute maximally unbiased distributions subject to the constraints
of given mean and variance; in this sense the choice above is one of the most sensible ones to
make, prior to any empirical study that would actually attempt to extract effective couplings
from real market data. Moreover, and most importantly, we find that our choice offers
enough possibilities to elucidate our claim that iGBMs provide simple and transparent way to
describe phenomena such as intermittent market dynamics, and qualitatively even reasonably
well.

3 It appears that low-dimensional models of market dynamics exhibiting meta-stable states have appeared in the
literature before, e.g., [27].
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3. Collective properties

To characterize the system macroscopically, one may start from an assumption that its weak
noise limit can be described in terms of small fluctuations about stationary points (if they exist)
of the noiseless dynamics, which must solve

hi = κ−1
i

[
Ii +

∑
j

Jij g(hj )
]
. (4)

Macroscopic properties of solutions of equation (4) are obtained via a cavity-type
analysis first proposed in [24] for this type of system. Defining vi = g(hi), magnetization
m = N−1 ∑

i vi , a spin-glass-type order parameter q = N−1 ∑
i v

2
i and a susceptibility

C = N−1 ∑
i g

′(hi), one obtains the following set of self-consistency equations describing
fixed points of the noiseless dynamics:

m = 〈〈v̂〉〉, C = 1

J
√

q
〈〈zv̂〉〉, q = 〈〈v̂2〉〉, (5)

in which 〈〈·〉〉 denotes an average over the N (0, 1) Gaussian z and Ii- and κi- distributions, and
v̂ = v̂(I, z, κ) solves v̂ = g(κ−1[J0m+J

√
qz+αJ 2Cv̂+I ]). In the case of multiple solutions,

a Maxwell construction is used to choose the one corresponding to the proper stable solution
[23, 24]. For symmetric couplings, α = 1, equations (5) correspond to a replica-symmetric
description of the system.

For the sake of simplicity, we specialize to κi = κ in what follows. The structure of the
phase diagram obtained from (5) is then similar to that of the SK model [28] with κ playing
the role of temperature, exhibiting an ergodic phase at large κ (which is paramagnetic with
m = 0, if Ii ≡ 0) and glassy (ferromagnetic) phases at small κ and small (large) J0. At
0 < α < 1 the validity of the assumption of having fixed points is no longer guaranteed, and
chaotic solutions are observed in the noiseless dynamics at sufficiently small α. Indeed, as
α → 0, the instability of the ergodic phase (for Ii ≡ 0 at κc = J ) marks a transition to chaotic
dynamics, as already observed in [25].

The main point is that, wherever equations (4) have a multiplicity of (glassy) solutions,
i.e. in a large part of the parameter space at small κ and small J0, according to equations (5),
there is a simple mechanism to produce intermittency in the market dynamics. It is related
to the observation that, in a system with many meta-stable states (corresponding to different
overall market situations), the dynamics associated with fluctuations within a state is very
different from that of transitions between different meta-stable states. The latter are often
associated with major restructuring of the system and accompanied by volatility bursts of the
market dynamics. Transitions can be spontaneous or induced by perturbations of the market.

4. Simulations

In large systems, spontaneous transitions are rare. We have looked at a simple mechanism
of inducing transitions which could be interpreted as modelling the effect of incoming
information. It consists in occasionally resetting the ‘indicator variables’ vi(t) = g(hi(t)), in
terms of which the prices of the various stocks interact, to values other than determined by
equations (3); specifically we implemented it by maintaining a list of randomly chosen stocks
whose indicator variables are clamped at their current negative values: vi(t) → vi = −vi(ti)

for t > ti , with ti denoting the time at which stock i was selected to be clamped as described;
with a certain probability per unit time, a random selection among the elements of this list
is made to be replaced by a (randomly chosen) other stock. This procedure mimics in a
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Figure 1. (a) Change of index �I over a time increment τ = 25 as a function of time for 50
interacting stocks. (b) Scaled distributions of log-returns σP (�h/σ) over the index for τ = 25
and τ = 50.

generic fashion effects of unexpected information, e.g., about a company’s performance on
the occasion of its quarterly reporting, or a response to major analysts’ reports.

The system exhibits intermittent market dynamics for a broad range of parameters, with
fast decay of correlations of prices, but relatively slow decay of the volatility correlations. Here
we report simulation results for a system of N = 50 stocks with g(h) = tanh(h)—feedback,
system parameters J0 = 0, J = 1, κ = 0.4, α = 1/

√
2, µi = 0 and σ 2

i of the form 0.05 ri

with ri uniform in [0.5, 1.5]. The number of stocks clamped at any time is 3, with a random
replacement in the list of clamped elements on average after �t = 1000.

Figure 1(a) shows the change of the index I = 1
N

∑
i Si over a time increment τ = 25 as a

function of time, exhibiting clear signs of intermittent behaviour. Distributions of log-returns
{�hi = log[Si(t + τ)/Si(t)]} shown in panel 2, both for τ = 25 and τ = 50, exhibit fat tails.
Distributions at different τ scale fairly well, when normalized in terms of their variances σ .
For intermediate values of normalized log-returns the distributions can be fitted to power laws
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Figure 2. (a) Correlation functions of index changes (lower curve) and absolute values of index
changes (upper curves) for τ = 25. (b) Fit to a power law decay for t < 1250 (t/τ < 50) as
described in the main text.

P ∼ �h−(1+µ) with µ 	 2.2 ± 0.04 for τ = 25 (µ 	 1.6 ± 0.04 for τ = 50), though the
range covered is barely a decade, 0.4 < �h/σ < 4. Real markets typically have µ 	 3 [29].
Figure 2(a) demonstrates that index changes �I (t) are anti-correlated over a small interval at
short times, whereas there are long-range correlations of the ‘volatilities’ |�I (t)|; as shown
in figure 2(b), the correlation decay of the volatilities, after an initial sharp drop, is reasonably
well described by a power law of the form ∼t−x up to t 	 1250, with x 	 0.22 ± 0.02 for
τ = 25 (x 	 0.27 ± 0.02 for τ = 50). For real markets values of x ∈ [0.3, 0.6] are reported
[1, 2, 29]. The crossover to exponential decay at later times (with decay time τd 	 1500) is a
consequence of the timescale set by the rate of external disturbances.

5. Summary and discussion

To summarize, we have introduced a minimal interacting generalization of the GBM and
shown that it gives rise to volatile market dynamics with fat tails in distributions of log-returns
and long-range correlations of volatilities. A description such as chosen here may be thought
of as arising by integrating out all but the price degrees of freedom from the hypothetical
underlying full theory. In such a reduced theory, interactions between prices and memory
effects would normally appear, and our description would in that sense constitute a Markovian
approximation to the reduced theory. Analytical studies also including non-Markovian variants
of the present set-up are currently under way [31].

It is worth noting that the use of reduced theories is not uncommon in physics. The,
perhaps, most prominent example is the effective electron–electron interaction obtained from
an underlying theory involving electron–phonon interactions [32], a simplified version of which
is then used as a cornerstone of the BCS theory of super-conductivity [33]. A similar, but less
well-known example is the effective interaction between two-level systems in glasses, once
more mediated by phonons, simplified versions of which have been used, e.g., to rationalize
the observed universality of glassy low-temperature physics and specifically to describe low-
temperature relaxation in amorphous systems [34, 35]. In both examples, the simplifications
made in the reduced theories include the neglect of higher order interactions as well as
approximations of a nature analogous to the Markovian approximation in our case. In the first
example, the underlying full theory is reasonably well known. In the second example, as in
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our case, it is not, rendering theories of interacting two-level systems phenomenological in the
same sense as the underlying phenomenological theories of two-level systems in glasses [36].

In many of the models suggested to reproduce the main stylized facts of market dynamics,
model parameters must be tuned to create critical or near-critical conditions in these systems.
For example, in the Cont–Bouchaud percolation model [7, 8], the cluster structure of trading
agents must follow a statistics as obtained sufficiently close to the percolation threshold, and
trading activity bust be low. A similar constraint applies, e.g., to the Ising-type model [14]
in which, apart from the low trading activity constraint, the ‘thermal’ formation of cluster
structure requires temperatures to be near critical. In a similar vein, volatile market dynamics
in the grand-canonical MG [11, 12, 16, 17] requires the system to be close enough to criticality,
a requirement known to become more stringent as the system size increases, and intermittent
market dynamics in that system has for this reason been looked upon as a finite-size effect
[11, 12, 16, 17].

Models invoking heuristics of self-organized critical behaviour [30] of market dynamics
appear to constitute an exception to such fine-tuning requirement, although there is usually the
requirement of a clear separation of timescales between fast internal exchange mechanisms
and slow driving by the environment. The Ising-type model introduced by Iori [13] is fairly
involved, and we have not been able to identify the key ingredient that makes the model
critical, and in which sense, nor whether that mechanism is self-organized.

In the present model intermittent market dynamics does not require fine tuning of
parameters, but appears to be a consequence of the fact that the properties of a ‘marginal’
glassy phase with a large number of meta-stable states (which the model would have in a
large part of parameter space, if its couplings were fully symmetric) appear to survive the
introduction of moderate asymmetries.

Observed effective exponents describing the distribution of log-returns and the decay of
volatility correlations in the present model appear to be weakly parameter dependent, and
are for the parameter settings adopted in the present paper still different from those of real
markets, though not entirely off the mark (no tuning has so far been attempted). This is not
unanticipated, as the present generic set-up still contains a number of features which are not
entirely realistic, such as complete connectivity or uncorrelated couplings to name but two.

In the standard GBM, the model parameters µi and σi can be directly linked to growth
rates and volatilities of stock-price evolution, although the problem of reliably estimating
these from observations over some finite time window is likely to be difficult if they are
time dependent. It has to be pointed out that the analogous task of linking parameters of the
iGBM to observable quantities is much harder and entirely non-trivial. This is due to the very
existence of interactions, by which the observed growth rates and volatilities attain the status of
interaction-renormalized quantities that can no longer be identified with the bare idiosyncratic
growth rates and volatilities of the interacting model. Analogous issues arise in the context
of credit risks, where a tentative solution involving a considerable refinement of conventional
rating procedures was suggested [37]. Due to many difference in the details, a solution of that
kind is infeasible in the present case, however. The additional information necessary to obtain
plausible estimates for the statistics of growth rates, volatilities and interactions can only come
from detailed studies of complete sets of cross-correlation functions of financial time series.
However, meaningful comparisons of the quality of fits of historical data to interacting models
or to non-interacting models with correlated noises should be possible and eventually allow
model selection.

In this context, we believe it is worth stressing the fact that our model manifestly maintains
its close links to the world of classical continuous-time finance (on this see in particular the
notes in the appendix), a feature which sets it quite apart from most of the agent-based
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models discussed in the literature. In particular, it appears that issues such as derivative
pricing and risk-neutral valuation are for the present model still within reach of known tools
of Mathematical Finance [19, 20].

In the present study, perturbations due to unexpected incoming information were
responsible for occasionally triggering phases of volatile market behaviour. Another
mechanism to produce intermittent market dynamics in the iGBM we have also briefly looked
at consists in assuming that the noise in (3) has a component that is slow and the same for all risk
elements traded in the market. It could describe the influence of the overall economy and could
with good reason be regarded as part of the internal market dynamics rather than a perturbation.
In this set-up, one could take ηi(t) = √

ρY (t) +
√

1 − ρεi(t), with εi(t) being independent
variance-1 Gaussian white noises, and the common component Y (t), e.g., a slow variance-1
Ornstein Uhlenbeck process; the parameter 0 � ρ � 1 specifies the relative importance of
the common component. Noise models of this form are actually recommended for models of
financial risk within the Basel-II accord [38]. Including deterministic components in ηi(t),
which could, e.g., describe seasonal effects, would produce similar effects. This alternative
mechanism also produced volatile market dynamics, with fast-decaying price correlations,
and slowly decaying volatility correlations, but fat tails in log-returns appeared to be much
less pronounced. It is suggested that the crucial difference between these noise models is that
one contains jump processes, whereas the other does not. It appears reasonable to assume
that in realistic markets both mechanisms—i.e., disturbances due to the arrival of unexpected
information and time-dependent forces influencing the economy either as a whole or entire
sectors of the economy in comparable ways—would be present to some degree.

Finally, it is perhaps worth emphasizing once more that—apart from issues of modelling
the dynamics of financial markets—the present model is interesting in its own right as a simple
interacting nonlinear dynamical system exhibiting intermittent dynamics.
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Appendix. Arbitrage and completeness issues

In this appendix, we briefly address the arbitrage and completeness issues of the market defined
by (3). In order to make contact with the relevant theory established in continuous finance, it
is useful to rewrite (3) as a set of proper stochastic differential equations to avoid (ill defined)
Langevin equations,

dhi =
⎡
⎣Ii − κihi +

∑
j (�=i)

Jij g(hj )

⎤
⎦ dt + σi dW̃i(t), (A.1)

in which W̃i are Wiener processes. Reverting to the original price variables, one gets (using
Ito’s lemma)

dSi = Siαi(t) dt + Siσi dW̃i(t) (A.2)
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with a drift αi(t) which is time dependent via the time dependence of the assets traded in the
market, i.e., setting S(t) = {Si(t)} we have

αi(t) = αi(S(t)) = µi − κi ln(Si(t)/Si0) +
∑
j (�=i)

Jij g(ln(Sj (t)/Sj0)). (A.3)

This is, in fact, a multidimensional version of market models extensively discussed in
mathematical finance literature (e.g. [19, 20]), simplified by the facts that (i) the volatility
matrix is diagonal, σij = σiδij , and that (ii) the volatilities σi are time independent. This
model is known to be free of arbitrage, as a Girsanov transformation described by Girsanov
kernels ϕi(t), chosen to satisfy

σiϕi(t) = r(t) − αi(S(t)), (A.4)

with r(t) the risk-free interest rate, would allow to transform (A.2) into a stochastic process
driven by Wiener processes Wi , and drift term given by the risk-free interest rate,

dSi = Sir(t) dt + Siσi dWi(t), (A.5)

thereby excluding arbitrage ([20], chapter 11). In formal terms, the Girsanov transformation
affects a transformation between {W̃i} path probabilities and {Wi} path probabilities.

The transformation is well defined, if the so-called Novikov condition

E

[
exp

(
1

2

∫ T

0
dt

∑
i

ϕi(t)
2

)]
< ∞ (A.6)

is satisfied, in which the expectation is defined in terms of the {W̃i} path probabilities, and the
risk horizon T is assumed to be finite. Since in our case

ϕi(t) = r(t) − αi(S(t))

σi

(A.7)

with time-independent σi , possible violations of the Novikov condition could only come from
divergences of the nominator. This possibility can, however, be excluded given the nature of
(A.2) and the properties of the drift terms αi(S(t)). If anything, the mean reverting term with
the only potential divergences at Si → 0 or Si → ∞ contributes to Si(t) staying away from
these values.

Following standard reasoning [19, 20]), one would classify a market described by (3) as
complete, as the number of driving Wiener processes is taken to be equal to the number of
traded risky assets. As a consequence, simple contingent claims in the sense of [20] would
allow unique pricing via a multidimensional generalization of the Black–Scholes equation.

The situation is more subtle in the cases where we consider perturbed versions of the
dynamics, either as investigated in section 4., or of the form mentioned in section 5. According
to current understanding, the absence of arbitrage is a property likely to survive the introduction
of either form of random perturbation. Completeness, on the other hand, is not, as the very
introduction of random perturbations entails that the number of random processes driving
the dynamics would be larger than the number of traded risky assets (on this, see the ‘Meta
theorem’ 8.3.1 in [20]). Derivative pricing would then no longer be unique.
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